
J. Plasma Physics (2013), vol. 79, part 4, pp. 413–419. c© Cambridge University Press 2013

doi:10.1017/S0022377813000275

413

Fluid description of the cooperative scattering of light
by spherical atomic clouds

N. P I O V E L L A1, R. B A C H E L A R D2 and P H. W. C O U R T E I L L E 2

1Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano I-20133, Italy
(nicola.piovella@unimi.it)

2Instituto de Fı́sica de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil

(Received 15 December 2012; revised 8 February 2013; accepted 11 February 2013; first published online 14 March 2013)

Abstract. When a cold atomic gas is illuminated by a quasi-resonant laser beam,
light-induced dipole–dipole correlations make the scattering of light a cooperative
process. Once a fluid description is adopted for the atoms, many scattering properties
are captured by the definition of a complex refractive index. The solution of the
scattering problem is here presented for spherical atomic clouds of arbitrary density
profiles, such as parabolic densities characteristic of ultra-cold clouds. A new solution
for clouds with infinite boundaries is derived, which is particularly useful for the
Gaussian densities of thermal atomic clouds. The presence of Mie resonances, a
signature of the cloud acting as a cavity for the light, is discussed. These resonances
leave their fingerprint in various observables such as the scattered intensity or in
the radiation pressure force, and can be observed by tuning the frequency of the
incident laser field or the atom number.

1. Introduction
Ultra-cold and quantum plasmas have shown an increas-
ing interest for their analogies with cold atomic systems
(Mendonça et al. 2008; Mendonça and Terças 2013). In
the dilute regime, direct particle interactions can often
be neglected and the particles are interacting only via
their common radiation field. Furthermore, cold atomic
systems are often at the borderline between classical and
quantum realms, allowing to investigate in a controlled
way how cooperativity changes when a transition to a
quantum regime occurs. A simple example is provided
by a cold atomic cloud released from a magneto-optical
trap and illuminated by a laser beam (Bender et al.
2010; Bienaimé et al. 2010). Such a system manifests
many interesting effects when the atomic cloud loses
its granularity and can be described as a continuous
fluid (Prasad and Glauber 2010). As size, shape and
density of the scatterer vary, a variety of radiating
patterns emerge, well known since the pioneering studies
of Mie on extended dielectric particles (Mie 1908; van de
Hulst 1981).

Although Mie scattering from a uniform dielectric
sphere already represents a rather complex problem,
light scattering by cold atoms adds new features that
deserve dedicated studies (Bachelard et al. 2011, 2012b).
First, changing the laser wavelength allows us to tune
the light–matter interaction: this allowed to observe ex-
perimentally the transition from single-atom scattering
to Mie scattering by a macroscopic object, when the col-
lective effects appear (Bender et al. 2010; Courteille et al.
2010). Second, the weakness of direct inter-particle inter-
actions allows us to probe the forces that light exerts on

each individual atom: in particular, for ultra-cold atomic
clouds the pattern of atomic recoil was shown to contain
the history of the interaction, and to exhibit signatures
of anisotropy of the Mie scattering (Bachelard et al.
2012a). Finally, various geometries, atomic densities and
ordered or disordered structures can be generated by
designing appropriate magnetic and optical traps for
the atoms. This illustrates the flexibility of cold atom
experiments to model and investigate phenomena from
various fields, such as condensed matter and possibly
plasmas.

In this paper, we present the solution of the Mie
scalar scattering problem for spherical inhomogeneous
atomic clouds, with finite and infinite boundary condi-
tions. Beyond the classical Mie solution for hard and
homogeneous dielectric spheres, it provides a realistic
description of light scattering by dilute atomic clouds.
We discuss the possibility for the cloud to act as a
resonant cavity for the light, and the signatures of this
behavior.

2. The scattering equation
Let us consider a sample of N cold two-level atoms with
resonant frequency ωa, line width Γ = d2ω3

a/2π�ε0c
3

and electric dipole transition matrix element d. When
illuminated by a uniform laser beam with electric field
amplitude E0, frequency ω0 and wave vector k0 =
(ω0/c)êz , their response is described for weak incident
fields by the following coupled equations (Scully et al.
2006; Svidzinsky et al. 2008, 2010; Courteille et al.
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2010):

∂βj

∂t
=iΔ0βj(t)− i

dE0

2�
eik0·rj − Γ

2

N∑
m=1

exp(ik0|rj − rm|)
ik0|rj − rm| βm(t),

(2.1)
with Δ0 = ω0 − ωa, rj being the position of atom j, and
βj its complex probability amplitude to be excited at
time t. The scattering kernel

G(r, r′) =
exp(ik0|r − r′|)

ik0|r − r′| (2.2)

has a real component that describes the collective (su-
perradiant) atomic decay (Svidzinsky et al. 2008), and
an imaginary component that contains the collective
Lamb shift due to a light-induced short-range interac-
tion between the atoms (Friedberg et al. 1973; Scully and
Svidzinsky 2009, 2010). The latter becomes significant
when the number of atoms in a cubic optical wavelength,
ρλ3, is larger than unity. Equation (2.1) has been ob-
tained assuming that at most one atom is excited (Scully
et al. 2006; Courteille et al. 2010). However, this model
has also been shown to describe the dynamics of coupled
classical linear oscillators (Svidzinsky et al. 2010), so
that the many-body features of cooperative scattering
by two-level atoms may be understood as a classical
effect. Note that this analogy holds only in the weak
excitation limit of the atomic ensemble. Furthermore,
in this approach short-range dipole interactions and
polarization effects are neglected (Friedberg et al. 1973).

Neglecting granularity and isolating the self-decaying
term −(Γ/2)βj , (2.1) takes the form of an integro-
differential fluid equation for the complex field β(r, t)
(Bachelard et al. 2012b):

∂β(r, t)

∂t
=

(
iΔ0 − Γ

2

)
β(r, t) − i

dE0

2�
eik0·r

−Γ

2

∫
dr′ρ(r′)G(r, r′)β(r′, t), (2.3)

where ρ(r) is the atomic density. At a steady state, (2.3)
yields∫

dr′ρ(r′)
exp(ik0|r − r′|)

k0|r − r′| β̃(r′) = − (2δ + i) β̃(r) + eik0·r,

(2.4)
where we have introduced the normalized detuning δ =
Δ0/Γ and the excitation field β̃(r) = (�Γ/dE0)β(r). Let
us remark that the kernel of the integral of (2.4) is the
Green function for the Helmholtz equation:(

∇2 + k2
0

) exp(ik0|r − r′|)
|r − r′| = −4πδ(r − r′) (2.5)

and that (∇2+k2
0) exp(ik0 ·r) = 0. Then, applying (∇2+k2

0)
to (2.4) we obtain that β̃(r) satisfies the Helmholtz
equation [

∇2 + k2
0m

2
0(r)

]
β̃(r) = 0, (2.6)

where m0(r) is the local refraction index of the atomic
cloud:

m2
0(r) = 1 − 4πρ(r)

k3
0(2δ + i)

. (2.7)

Hence, the field β̃(r) propagates as a wave in the cloud of
cold atoms, which acts as a ‘classical’ dielectric medium
of the index m0(r). The imaginary part of m0 originates
in the single-atom decay term and is responsible for the
diffusive nature of the cloud: it vanishes only in the limit
of the far-detuned incident laser.

3. Scattered intensity and radiation pressure
force

From the local response β(r, t) to the external field,
many measurable quantities can be derived, such as
the scattered intensity and the radiation pressure force
(Courteille et al. 2010). The scattered field is (Bachelard
et al. 2011)

Es(r, t) = −E0

∫
dr′ρ(r′)

exp(ik0|r − r′|)
k0|r − r′| β̃(r′, t) (3.1)

and the far-field scattered intensity, at distance r and
direction (θ, φ) with respect to the z-axis, reads

Is(r, θ, φ) = cε0
E2

0

k2
0r

2

[
N〈|β̃(r)|2〉 + N2|s(k)|2

]
, (3.2)

where

〈|β̃(r)|2〉 =
1

N

∫
dr′ρ(r′)|β̃(r′)|2 (3.3)

and s(k) is the structure factor,

s(k) =
1

N

∫
drρ(r)β̃(r)e−ik·r, (3.4)

with k = k0(sin θ cosφ, sin θ sinφ, cos θ). The first term
of (3.2) corresponds to the incoherent and isotropic
contribution, and is proportional to N, whereas the
second term is the superradiant, strongly directional,
scattered intensity, and it is proportional to N2. Hence,
the cooperation of an increasing number of atoms to
scatter light leads to a more coherent and focused
emission – superradiance dominates over single-atom
scattering.

Another observable of interest is the radiation pres-
sure force, that is the net force that the light exerts on the
atoms. It is the sum of two contributions, the first due
to absorption of photons from the incident field and the
second one due to their spontaneous re-emission along
any direction (θ, φ) (Courteille et al. 2010; Bachelard
et al. 2011). The force on the cloud center of mass and
along the z-axis reads

〈Fz〉 = 〈Fa
z 〉 + 〈Fe

z 〉, (3.5)

where

〈Fa
z 〉 = −2πε0

E2
0

k2
0

Im(s(k0)), (3.6)

〈Fe
z 〉 = −ε0

E2
0N

2k2
0

∫
dΩk cos θ|s(k)|2, (3.7)

with dΩk = dφ dθ sin θ as the elementary solid angle.
The absorption force Fa is directed along the z-axis and
it is proportional to the incident intensity, I0 = ε0cE

2
0 ,
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since it corresponds to the absorption of laser photons.
The emission force Fe is directed along k, and its z-
component is obtained by averaging over the solid angle
the product between the emission probability of the
photons |s(k)|2 and the projection of their momentum
on the z-axis, hence the factor cos θ. The integration
over the solid angle Ωk in (3.7) is performed using the
identity∫

dΩk cos θeik·(r−r′) = 4πi
z − z′

|r − r′| j1(k0|r − r′|)

= −4πi

k0

∂

∂z
j0(k0|r − r′|), (3.8)

where j0(x) = sin(x)/x and j1(x) = sin(x)/x2 − cos(x)/x
are the zeroth and first-order spherical Bessel functions.
Using (3.8), the emission force is written as

〈Fe
z 〉 = 2πε0

E2
0

k2
0N

Re

[∫
drρ(r)β̃∗(r)

∂

∂z

×
∫

dr′ρ(r′)
exp(ik0|r − r′|)

k0|r − r′| β̃(r′)

]
. (3.9)

Combining (3.6) and (3.9) allows us to write the total
force as

〈Fz〉 =
1

N

∫
drρ(r)Re

{
−dβ∗(r)∇z

[
E0e

ik0·r

−E0

∫
dr′ρ(r′)

exp(ik0|r − r′|)
k0|r − r′| β̃(r′)

]}
. (3.10)

Since the term in the square bracket is the total electric
field Et(r) = E0e

ik0·r + Es(r), i.e. the sum of the incident
and scattered field given by (3.1), the force on the center
of mass appears as the average over the local force on
the atoms:

F = −dRe(β∗∇rEt). (3.11)

Hence, we recover the well-known expression of the
force that a light field exerts on an atom (Gordon and
Ashkin 1980), though a crucial difference is that Et here
contains the self-radiated field of the cloud. Note also
that in (3.11), we have extended our expression (3.10)
to every spatial direction.

4. Mie scattering
As discussed before, the knowledge of the excitation
probability β(r) is the key to understanding the radiation
pattern and the forces exerted on the atomic cloud.
Despite the three-dimensional nature of the problem, an
analytical solution exists for simple geometries. We here
focus on clouds with spherical symmetry ρ(r), for which
the eigenmodes of the wave equation have the form
un(r)Pn(cos θ), with Pn(x) as the nth Legendre polyno-
mial and un(r) a radial mode that satisfies (Bachelard
et al. 2012b)

u′′
n(r) + 2

u′
n(r)

r
+

[
k2

0m
2
0(r) − n(n + 1)

r2

]
un(r) = 0. (4.1)

Because of the rotational symmetry, no dependence on
φ is present. The excitation field is then decomposed as
a sum of partial waves:

β̃(r, θ) =

∞∑
n=0

(2n + 1)βnun(r)Pn(cos θ), (4.2)

whereas the incident wave is decomposed as

eik0·r =

∞∑
n=0

in(2n + 1)jn(k0r)Pn(cos θ). (4.3)

Finally, the scattering kernel is expanded in partial
waves, using the identity

exp(ik0|r − r′|)
k0|r − r′| = 4πi

∞∑
n=0

n∑
m=−n

Yn,m(r̂)Y ∗
n,m(r̂′)

×
{
jn(k0r

′)h(1)
n (k0r) for r > r′

jn(k0r)h
(1)
n (k0r

′) for r < r′
(4.4)

where r̂ and r̂′ are unit vectors in the directions of
r and r′, Yn,m is the spherical harmonics (in particular,

Yn,0(θ, φ) =
√

(2n + 1)/4πPn(cos θ)), and jn(z) and h(1)
n (z)

are the spherical Bessel functions. Inserting (4.2)–(4.4)
into (2.4) and projecting on the orthogonal basis of the
Legendre polynomial, we obtain the relation

jn(k0r) = (2δ + i)βnun(r) + βnfn(r), (4.5)

where

fn(r) = 4πi

∫ ∞

0

dr′r′2ρ(r′)un(r
′)

×
{
jn(k0r

′)h(1)
n (k0r) for r > r′

jn(k0r)h
(1)
n (k0r

′) for r < r′
. (4.6)

Once specified the form for ρ(r), the solution for the
radial mode un can be derived, and the amplitude of
each partial wave βn calculated from (4.5) and (4.6).
Assuming a finite cloud of radius R, such that ρ(r) = 0
for r > R, it reads (Bachelard et al. 2012b)

βn =
jn(k0R)

(2δ + i)un(R) + iλnh(1)(k0R)
(4.7)

with

λn = 4π

∫ ∞

0

drr2ρ(r)jn(k0r)un(r), (4.8)

and where we have used that

fn(R) = 4πih(1)(k0R)

∫ R

0

dr′r′2ρ(r′)un(r
′)jn(k0r

′)

= iλnh
(1)(k0R). (4.9)

The cloud structure factor is then easily derived
(Bachelard et al. 2011):

s(k) =
1

N

∞∑
n=0

(2n + 1)λnβnPn(cos θ), (4.10)

as well as the isotropic radiation contribution:

〈|β̃(r)|2〉 =
1

N

∞∑
n=0

(2n + 1)λ̆n|βn|2, (4.11)
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Figure 1. (Colour online) (a) Radiation pressure force as a function of the phase-shift Φ for homogeneous (plain line) and
Thomas–Fermi (dashed line) distributions. Simulations realized for a cloud of size k0R = 10, a detuning δ = −50 and varying
the number of atoms N. The force is normalized by the single atom force F1 = 2πε0(E0/k0)

2/(1 + 4δ2), which is observed in the
absence of collective effects. (b) Radiation pattern I(θ) for homogeneous (thick black line) and Thomas–Fermi (blue thin line)
distributions. Simulations realized for a cloud of size k0R = 10, detuning δ = −50 and N = 6100 atoms.

where

λ̆n = 4π

∫ ∞

0

drr2ρ(r)|un(r)|2. (4.12)

The problem of scattering by a homogeneous spherical
dielectrics was initially investigated by Mie (1908),
and it was later generalized to homogeneous ellips-
oids. In the case of a homogeneous spherical atomic
cloud of N atoms and radius R, the index is m0 =√

1 − 3N/(k0R)3(2δ + i), and the radial solution of the
Helmholtz equation is un(r) = jn(m0k0r). Using the spe-
cial properties of the Bessel functions, λn is explicitly
calculated:

λn = (2δ + i)(k0R)2 [m0jn−1(m0k0R)jn(k0R)

−jn−1(k0R)jn(m0k0R)] , (4.13)

and the complex amplitude of the nth partial wave is
deduced:

βn =
jn(k0R)

(2δ + i)jn(m0k0R) + iλnh(1)(k0R)
. (4.14)

As can be observed in Fig. 1, when the optical density
is tuned – here varying the number of particles at fixed
volume and detuning, the force that pushes the cloud
exhibits some oscillations. These resonances correspond
to the cloud acting as a resonant cavity for the light,
and are best understood by introducing the phase-
shift experienced by the light inside the cloud: Φ =∫
(m0(0, 0, z) − 1)dz. When this phase-shift is a multiple

of π, the cavity that the cloud forms is at resonance
with the light, so a greater amount of light is stored
in the atomic cloud and the radiation pressure force
increases (Bachelard et al. 2012b).

Yet the spiky structure of the force for homogeneous
clouds hides more complex resonances. It is known
that the sharp index interface between a dielectric and,
say, vacuum allows for surface modes to propagate.
These are called whispering gallery modes (Nussenzveig

1992). They are characterized by sharp resonances whose
number, positions and amplitudes strongly depend on
the cloud characteristics, making them a powerful tool
to characterize the scatterers (Oraevsky 2002).

This exact solution of the scattering problem as an
infinite series of partial waves is reminiscent of the Mie
solution (Mie 1908; van de Hulst 1981), although our
approach is slightly different: Mie used continuity equa-
tions for the tangential field components at the dielectric
boundary, while we adopted an integral formulation of
the problem. The two solutions are nevertheless formally
the same (Bachelard et al. 2012b), as far as finite clouds
are concerned. Let us also remark that our solution is
more general, since it holds for any radial solution un(r)
of the Helmholtz equation, i.e. it applies to any spherical
cloud with arbitrary density. It is thus of particular
interest for atomic clouds where the traps in general
generate inhomogeneous density profiles.

5. Ultra-cold clouds
Ultra-cold clouds of fermionic species have been success-
fully described by quadratic profiles of density, following
the pioneering work of Llewellyn Thomas and Enrico
Fermi on distributions of electrons (Fermi 1927; Thomas
1927). These clouds exhibit a parabolic density ρ(r) =
(5N/2V )[1 − r2/R2], with R being the radius of the
cloud and V = 4πR3/3 its volume, and consequently a
spatially dependent refraction index:

m2
0(r) = m2

c + γ2r2, (5.1)

with mc =
√

1 − (15/2)N/(k0R)3(2δ + i) as the index in
the core of the sample, and γ2 = (15/2)N/(k3

0R
5)(2δ+ i).

Using the substitution un(r) = r−3/2wn(x), with x =
γr2/2, one can show that wn(x) satisfies the Coulomb
wave equation, well known in nuclear physics (Martin
2002), whose solutions are the Coulomb wave func-
tions wn(x) = Fn/2−1/4(−m2

c/4γ, x). We get the following
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Figure 2. Light intensity in the cloud with homogeneous (a) and Thomas–Fermi (b) distributions, in the plane y = 0. Simulations
realized for a cloud of size k0R = 10, a detuning δ = −50 and N = 6100 atoms. The intensity is normalized to the laser
intensity I0.

partial wave expansion for the excitation field:

β̃(r, θ) =

∞∑
n=0

(2n + 1)
βn

r3/2
Fn

2 − 1
4

(
−m2

c

4γ
,
γr2

2

)
Pn(cos θ).

(5.2)
Apart from the fact that studying the scattering by
atomic clouds with a quadratic density rather than a
homogeneous one is a much more realistic approxim-
ation, the former profile also yields different physics.
Indeed, as can be observed in Fig. 1, the spiky structure
of the whispering gallery modes disappears, and only
the regular oscillations of the longitudinal cavity modes,
such that the longitudinal phase-shift in the cloud is a
multiple of π, survive. Indeed, because the change in
the refractive index is much smoother in clouds with a
Thomas–Fermi distribution than with a homogeneous
one, the surface modes cannot propagate anymore.

This analysis is confirmed by the profiles of light
intensity in the cloud (see Fig. 2). One can observe
that homogeneous spheres exhibit off-axis surface modes
(Fig. 2a) – this feature was checked for various sets of
parameters. These surface modes create new resonances
that compete with the longitudinal ones, causing the
spiky structure observed in Fig. 1 for the center-of-
mass force. These off-axis modes appear much weaker
in clouds with the Thomas–Fermi distribution (Fig. 2b).

6. Thermal clouds
Finally, we discuss the Mie scattering solution in clouds
with boundaries extending until r = ∞. For instance,
thermal clouds with a Maxwell–Boltzmann velocity dis-
tribution have a Gaussian density profile, so the Mie
scattering solution that makes use of finite boundary
conditions cannot be used straightforwardly. Here, we
propose an alternative derivation that holds as well for
such distributions with boundaries at infinite. To our
knowledge, it is the first solution to the Mie scattering
problem with infinite boundaries.

Starting from (4.5), the amplitude βn of the nth
partial wave can be obtained by multiplying both terms

by 4πr2ρ(r)jn(k0r) and integrating over r:

βn =
An

(2δ + i)λn + Bn

, (6.1)

where we have introduced:

An = 4π

∫ ∞

0

drr2ρ(r)j2
n (k0r), (6.2)

Bn = 4π

∫ ∞

0

drr2ρ(r)jn(k0r)fn(r). (6.3)

Using (4.6), the coefficient Bn can be written as

Bn = 16π2i

∫ ∞

0

drr2ρ(r)jn(k0r)

×
{
h(1)
n (k0r)

∫ r

0

dr′r′2ρ(r′)un(r
′)jn(k0r

′)

+ jn(k0r)

∫ ∞

r

dr′r′2ρ(r′)un(r
′)h(1)

n (k0r
′)

}
. (6.4)

Using the identities (A 5) and (A 6) of Appendix, and the
identity jn(z)h

(1)
n

′
(z) − h(1)

n (z)j ′
n(z) = i/z2, one can show

that

Bn = (2δ + i)(−λn + iAnDn) (6.5)

with

Dn = lim
r→∞

{
r2

[
h(1)
n (k0r)un(r) − un(r)h

(1)
n

′
(k0r)

]}
. (6.6)

One deduces that

βn =
1

i(2δ + i)Dn

=
1

2δ + i
lim
r→∞

×

⎧⎨
⎩ 1

ir2
[
h

(1)
n (k0r)u′

n(r) − un(r)h
(1)
n

′
(k0r)

]
⎫⎬
⎭ . (6.7)

As for the eigenvalues λn of the scattering problem, they
read

λn = 4π

∫ ∞

0

drr2ρ(r)jn(k0r)un(r) = (2δ + i)

× lim
r→∞

{
r2[jn(k0r)u

′
n(r) − un(r)j

′
n(k0r)]

}
. (6.8)
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Thus, the scattering coefficients are determined by the
value of the radial modes un(r) and of their first deriv-
ative at r → ∞.

7. Discussion
Here, we have discussed the light scattering by a macro-
scopic atomic cloud, when the atoms cooperate to scatter
the light superradiantly. The cloud was considered as a
fluid, i.e. the point-like nature of the microscopic scatter-
ers was neglected, and an analytical solution was then
derived for spherical geometries, where the excitation
field inside the cloud is developed as the sum of partial
waves. Although we generalized it to arbitrary spherical
densities, this technique is formally equivalent to Mie
scattering, where continuity equations are used at the
boundaries of the scattering medium. Furthermore, our
technique allowed for the derivation of a solution to
the Mie problem for clouds with infinite boundaries. An
accurate treatment of the decay of the density profile is
crucial to understand if some special resonances, such
as whispering gallery modes, may exist or not. It is also
important in the context of atomic clouds or plasmas
where, different from solid dielectrics, the densities are
usually strongly non-homogeneous.

Appendix. Integral identities for the radial
eigenmodes un(r)

The function un(r) is a solution of the differential equa-
tion (4.1):

u′′
n + 2

u′
n

r
+

[
k2

0m
2
0(r) − n(n + 1)

r2

]
un = 0, (A 1)

where m2
0(r) = 1 − 4πρ(r)/k3

0(2δ + i). Defining vn(r) =
run(r), (A 1) becomes

v′′
n +

[
k2

0m
2
0(r) − n(n + 1)

r2

]
vn = 0. (A 2)

For m0(r) = 1, the solution is qn(r) = rjn(k0r). In-
troducing P (r) = k2

0m
2
0(r) − n(n + 1)/r2 and Q(r) =

k2
0 − n(n + 1)/r2, we get v′′

n + Pvn = 0 and q′′
n +Qqn = 0,

so that ∫
dr(Q − P )vnqn = qnv

′
n − vnq

′
n. (A 3)

Since

(Q − P )vnqn = k2
0(1 − m2

0)vnqn =
4πρ(r)

k0(2δ + i)
r2un(r)jn(k0r),

(A 4)
we obtain the indefinite integral

4π

k0

∫ r

dr′r′2ρ(r′)un(r
′)jn(k0r

′)

= (2δ + i)r2 {jn(k0r)u
′
n(r) − un(r)j

′
n(k0r)} . (A 5)

In a similar way, we obtain

4π

k0

∫ r

dr′r′2ρ(r′)un(r
′)h(1)

n (k0r
′)

= (2δ + i)r2
{
h(1)
n (k0r)u

′
n(r) − un(r)h

(1)
n

′
(k0r)

}
. (A 6)
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